Adaptive Methods

High Resolution Recovery of Piecewise Smooth

Data from its Spectral Information

Jared Tanner*

University of California, Davis

^{*}in collaboration with Eitan Tadmor

Outline

- Review of Fourier approximations for smooth(periodic) functions.
- Piecewise smooth functions practical computational data.
- Adaptive Mollifiers for the high order resolution of Gibbs' Phenomena.
 - $\overline{}$ error analysis \rightarrow exponential accuracy for piecewise analytic, numerics

Outline

- Review of Fourier approximations for smooth(periodic) functions.
- Piecewise smooth functions practical computational data.
- Adaptive Mollifiers for the high order resolution of Gibbs' Phenomena.
 - error analysis → exponential accuracy for piecewise analytic, numerics
- Adaptive Filters
 - overview of error analysis, numerics

Global(Periodic) Regularity and High Resolution

Spectral Convergence Rate, C^s

$$|S_N f(x) - f(x)| \le Const ||f||_{C^s} \cdot \frac{1}{N^{s-1}} \quad \forall s$$

$$\odot \|f\|_{C^s} := \max_{[-\pi,\pi]} |f^{(s)}|$$

Global(Periodic) Regularity and High Resolution

Spectral Convergence Rate, C^s

$$|S_N f(x) - f(x)| \le Const ||f||_{C^s} \cdot \frac{1}{N^{s-1}} \quad \forall s$$

$$\odot \|f\|_{C^s} := \max_{[-\pi,\pi]} |f^{(s)}|$$

Exponential Convergence Rate, Analytic

$$|S_N f(x) - f(x)| \le Const_{\eta} \cdot Ne^{-N\eta} \quad \Leftrightarrow \quad ||f||_{C^s} \le Const \cdot \frac{s!}{\eta^s}$$

Behavior of $f(\cdot)$ off the real axis determines η .

Global(Periodic) Regularity and High Resolution

Spectral Convergence Rate, C^s

$$|S_N f(x) - f(x)| \le Const ||f||_{C^s} \cdot \frac{1}{N^{s-1}} \quad \forall s$$

$$\odot \|f\|_{C^s} := \max_{[-\pi,\pi]} |f^{(s)}|$$

Exponential Convergence Rate, Analytic

$$|S_N f(x) - f(x)| \le Const_{\eta} \cdot Ne^{-N\eta} \quad \Leftrightarrow \quad ||f||_{C^s} \le Const \cdot \frac{s!}{\eta^s}$$

Behavior of $f(\cdot)$ off the real axis determines η .

- Convergence rate as fast as Global smoothness permits.
- ullet What about $f \in C^{\infty}$ non-analytic? Gevrey regularity.

What about Spectral Convergence for C^{∞} ?

$$\rho(x) = \begin{cases} \exp\left(\frac{(\pi x)^2}{x^2 - \pi^2}\right) & |x| < \pi \\ 0 & |x| \ge \pi. \end{cases}$$

Between exponential(Analytic) and spectral(C^s) is Gevrey Regularity,

What about Spectral Convergence for C^{∞} ?

$$\rho(x) = \begin{cases} \exp\left(\frac{(\pi x)^2}{x^2 - \pi^2}\right) & |x| < \pi \\ 0 & |x| \ge \pi. \end{cases}$$

Between exponential (Analytic) and spectral (C^s) is Gevrey Regularity,

 $\rho(\cdot)$ is *Gevrey regular* of order 2, $\rho^{(s)} \sim (s!)^2$,

$$|S_N \rho - \rho| \le Const_{\eta_\rho} \cdot Ne^{-2\sqrt{\eta_\rho N}}.$$

What about Spectral Convergence for C^{∞} ?

$$\rho(x) = \begin{cases} \exp\left(\frac{(\pi x)^2}{x^2 - \pi^2}\right) & |x| < \pi \\ 0 & |x| \ge \pi. \end{cases}$$

Between exponential (Analytic) and spectral (C^s) is Gevrey Regularity,

 $\rho(\cdot)$ is *Gevrey regular* of order 2, $\rho^{(s)} \sim (s!)^2$,

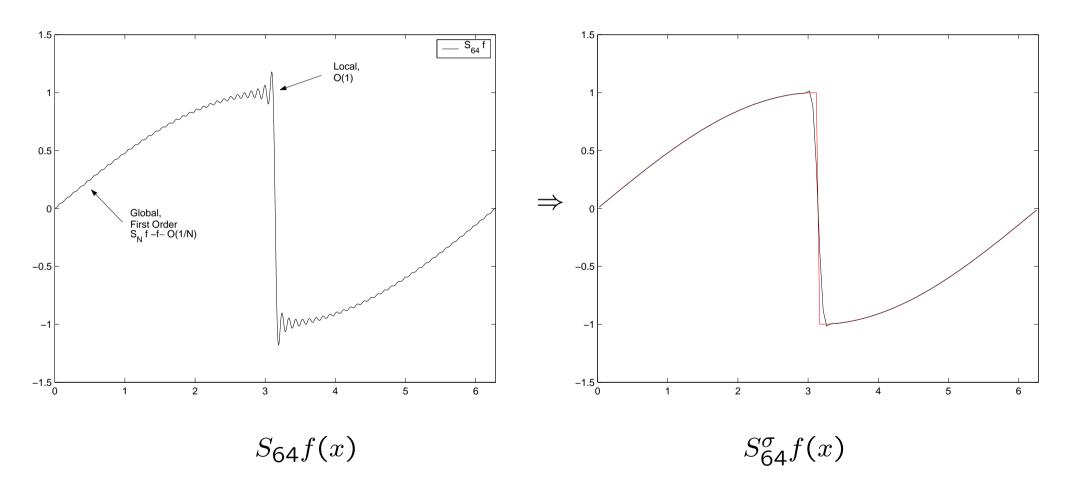
$$|S_N \rho - \rho| \le Const_{\eta_\rho} \cdot Ne^{-2\sqrt{\eta_\rho N}}.$$

Fractional power exponential convergence.

$$|S_N \psi - \psi| \le Const_{\eta} \cdot N^{\alpha/2} e^{-\alpha(\eta N)^{1/\alpha}} \quad \Leftrightarrow \quad \|\psi\|_{G^{\alpha}} \le Const \cdot \frac{(s!)^{\alpha}}{\eta^s}$$

Gibbs' Phenomena and Filtered Reconstruction

$$f(x) = \begin{cases} \sin(x/2) & x \in [0, \pi) \\ -\sin(x/2) & x \in [\pi, 2\pi) \end{cases}$$



• High order reconstruction with Gibbs' Phenomena removed.

Methods for discontinuous data

Local Smoothness, fixed polynomial order

$$\begin{array}{l} \bullet \ \, \text{Splines} \\ \bullet \ \, \text{Wavelets} \\ \bullet \ \, \text{WENO} \end{array} \right\} P_N f - f \sim O\left(\frac{1}{N^r}\right) \quad \text{fixed r} \\ \end{array}$$

Semi-Global Smoothness, spectral accuracy

$$ullet$$
 Gegenbauer $\left. iggr \} P_N f - f \sim C_s rac{1}{N^s}, \quad orall s$

Methods for discontinuous data

Local Smoothness, fixed polynomial order

$$\begin{array}{l} \bullet \ \, \text{Splines} \\ \bullet \ \, \text{Wavelets} \\ \bullet \ \, \text{WENO} \end{array} \right\} P_N f - f \sim O\left(\frac{1}{N^r}\right) \quad \text{fixed r} \\ \end{array}$$

Semi-Global Smoothness, spectral accuracy

$$ullet$$
 Gegenbauer $\left. iggr \} P_N f - f \sim C_s rac{1}{N^s}, \quad orall s$

Filtering and Mollification are essentially interchangeable,

- When to filter in dual space or mollify in physical space?
- Computationally more efficient to stay is the space of given data.

Canonical Polynomial Order Mollifiers

• One-parameter compactly supported, $(-\pi, \pi)$, functions.

$$\psi_{\theta}(x) := \frac{1}{\theta} \psi\left(\frac{x}{\theta}\right), \quad -\pi\theta \le x \le \pi\theta$$

Canonical Polynomial Order Mollifiers

• One-parameter compactly supported, $(-\pi, \pi)$, functions.

$$\psi_{\theta}(x) := \frac{1}{\theta} \psi\left(\frac{x}{\theta}\right), \quad -\pi\theta \le x \le \pi\theta$$

Convergence order as fixed number of exactly vanishing moments

$$\int_{-d}^{d} x^{j} \psi_{\theta}(x) dx = \delta_{j,0} \qquad j = 0, 1, 2, \dots, r - 1.$$

• Local
$$|f - f * \psi_{\theta}| \le \frac{\theta^r}{\pi^r(r+1)!} ||f^{(r)}||_{L^{\infty}(x-\pi\theta,x+\pi\theta)}$$

Canonical Polynomial Order Mollifiers

• One-parameter compactly supported, $(-\pi,\pi)$, functions.

$$\psi_{\theta}(x) := \frac{1}{\theta} \psi\left(\frac{x}{\theta}\right), \quad -\pi\theta \le x \le \pi\theta$$

• Convergence order as fixed number of exactly vanishing moments

$$\int_{-d}^{d} x^{j} \psi_{\theta}(x) dx = \delta_{j,0} \qquad j = 0, 1, 2, \dots, r - 1.$$

- Local $|f f * \psi_{\theta}| \le \frac{\theta^r}{\pi^r(r+1)!} ||f^{(r)}||_{L^{\infty}(x-\pi\theta,x+\pi\theta)}$
- Error decreases at *fixed polynomial order*(θ^r), $\theta \downarrow 0$.
- Recover from $S_N f(\cdot)$ requires similar order regularity, $\psi \in C^r$.
- Inherent small scale introduced by projection(sampling), $h \sim 1/N$.

Adaptive Mollifier of Tadmor(Gottlieb) & Tanner

The two parameter mollifier is given by:

$$\psi_{p,\theta}(x) := \frac{1}{\theta} \rho\left(\frac{x}{\theta}\right) D_p\left(\frac{x}{\theta}\right)$$

$$\odot \ \rho(\cdot)$$
, our G_0^2 localizer $\rho(x) = \begin{cases} \exp\left(\frac{(\pi x)^2}{x^2 - \pi^2}\right) & |x| < \pi \\ 0 & |x| \ge \pi. \end{cases}$

$$\odot$$
 $D_p(\cdot)$, Dirichlet Kernel $D_p(x) = \frac{\sin(p+1/2)x}{2\pi\sin(x/2)}$

Adaptive Mollifier of Tadmor(Gottlieb) & Tanner

The two parameter mollifier is given by:

$$\psi_{p,\theta}(x) := \frac{1}{\theta} \rho\left(\frac{x}{\theta}\right) D_p\left(\frac{x}{\theta}\right)$$

$$\odot \ \rho(\cdot)$$
, our G_0^2 localizer $\rho(x) = \begin{cases} \exp\left(\frac{(\pi x)^2}{x^2 - \pi^2}\right) & |x| < \pi \\ 0 & |x| \ge \pi. \end{cases}$

- \odot $D_p(\cdot)$, Dirichlet Kernel $D_p(x) = \frac{\sin(p+1/2)x}{2\pi\sin(x/2)}$
- Cancellation: $\psi_{p,\theta}$ possesses p near vanishing moments.

$$\int_{-\pi\theta}^{\pi\theta} x^j \psi_{p,\theta}(y) dy = \delta_{j0} + C_j \cdot p^{-(j-1)}, \quad \forall j \le p$$

• Unlike traditional mollifiers, dilation parameter as large as allowable

Error Analysis of Adaptive Mollifiers

Pointvalue recovery from a spectral projection, $S_N f(\cdot)$, or equidistant sampling $I_N f(\cdot)$.

Error composed of two terms:

Error :=
$$\psi_{p,\theta} * S_N f(x) - f(x)$$

$$\equiv (f * \psi_{p,\theta} - f) + (S_N f - f) * (\psi_{p,\theta} - S_N \psi_{p,\theta})$$

Error Analysis of Adaptive Mollifiers

Pointvalue recovery from a spectral projection, $S_N f(\cdot)$, or equidistant sampling $I_N f(\cdot)$.

Error composed of two terms:

Error :=
$$\psi_{p,\theta} * S_N f(x) - f(x)$$

$$\equiv (f * \psi_{p,\theta} - f) + (S_N f - f) * (\psi_{p,\theta} - S_N \psi_{p,\theta})$$

- Regularization := $(f * \psi_{p,\theta} f)$
 - Controlled by number of near vanishing moments
- Truncation := $(S_N f f) * (\psi_{p,\theta} S_N \psi_{p,\theta})$
 - Small due to mollifier regularity, essential dual space localization

Error Analysis of Adaptive Mollifiers

Pointvalue recovery from a spectral projection, $S_N f(\cdot)$, or equidistant sampling $I_N f(\cdot)$.

Error composed of two terms:

Error :=
$$\psi_{p,\theta} * S_N f(x) - f(x)$$

$$\equiv (f * \psi_{p,\theta} - f) + (S_N f - f) * (\psi_{p,\theta} - S_N \psi_{p,\theta})$$

- Regularization := $(f * \psi_{p,\theta} f)$
 - Controlled by number of near vanishing moments
- Truncation := $(S_N f f) * (\psi_{p,\theta} S_N \psi_{p,\theta})$
 - Small due to mollifier regularity, essential dual space localization

Error Analysis:

- ullet The optimal number of near vanishing moments, p.
- Justify selection of dilation parameter, $\theta \pi := d(x)$.

Error Analysis I, Regularization Error

• $f(\cdot)$ analytic in (x - d(x), x + d(x)) where d(x) distance to discontinuity, and $\rho \in G^2$, therefore $g_x(y) := f(x + y)\rho_{d(x)}(y) - f(x)$ is Gevrey order 2.

$$|\text{Regularization}| := |f * \psi_{p,\theta} - f|$$

$$= |S_p g_x(y) - g_x(y)|_{y=0}$$

$$\leq C_\rho \cdot p \cdot e^{-2\sqrt{p \cdot \eta_\rho}}$$

ullet Hidden dependence on dilation, heta, in $\eta_{
ho}$.

Error Analysis I, Regularization Error

• $f(\cdot)$ analytic in (x - d(x), x + d(x)) where d(x) distance to discontinuity, and $\rho \in G^2$, therefore $g_x(y) := f(x + y)\rho_{d(x)}(y) - f(x)$ is Gevrey order 2.

$$|\text{Regularization}| := |f * \psi_{p,\theta} - f|$$

$$= |S_p g_x(y) - g_x(y)|_{y=0}$$

$$\leq C_\rho \cdot p \cdot e^{-2\sqrt{p \cdot \eta_\rho}}$$

- Hidden dependence on dilation, θ , in η_{ρ} .
- Dilation parameter, θ , as large as possible such that $f(\cdot)$ analytic in $(x \theta \pi, x + \theta \pi) \Rightarrow \theta \pi := d(x)$.
- Non-Linear Adaptive Mollification, $\theta(x) := d(x)/\pi$.
- Symmetric reconstructions <u>must</u> sacrifice accuracy as approaching edges.

Error Analysis II, Truncation error

- Smoothness reflected as dual space localization, $(\psi S_N \psi)$, truncation.
- ullet Dirichlet Kernel analytic and $ho \in G^2 \Rightarrow \psi_{p,\theta(x)}$ Gevrey order 2,

$$\|\psi_{p,\theta(x)}\|_{C^s} \le C_\rho \cdot s \cdot \left(\frac{s^2}{e^2 \eta \theta(x)}\right)^s e^{p\eta/s} \quad s = 1, 2, \dots$$

Error Analysis II, Truncation error

- Smoothness reflected as dual space localization, $(\psi S_N \psi)$, truncation.
- Dirichlet Kernel analytic and $\rho \in G^2 \Rightarrow \psi_{p,\theta(x)}$ Gevrey order 2,

$$\|\psi_{p,\theta(x)}\|_{C^s} \le C_\rho \cdot s \cdot \left(\frac{s^2}{e^2 \eta \theta(x)}\right)^s e^{p\eta/s} \quad s = 1, 2, \dots$$

$$\begin{aligned} |\mathsf{Truncation}| \; &:= \; \|(S_N f - f) * (\psi_{p,\theta} - S_N \psi_{p,\theta})\|_{L^\infty} \\ &\leq \; Const \cdot \left(\frac{1}{N}\right)^{s-1} \|\psi_{p,\theta(x)}\|_{C^s}, \; \; \forall s \\ &\leq \; Const \cdot \; N \left(\frac{s^2}{e^2 \eta \theta(x) N}\right)^s e^{p\eta/s}, \; \; \forall s. \end{aligned}$$

 $\theta(x)$ in denominator dictates $\Rightarrow \theta(x)$ as large as possible.

Error Analysis II, Truncation error

- ullet Smoothness reflected as dual space localization, $(\psi-S_N\psi)$, truncation.
- Dirichlet Kernel analytic and $\rho \in G^2 \Rightarrow \psi_{p,\theta(x)}$ Gevrey order 2,

$$\|\psi_{p,\theta(x)}\|_{C^s} \le C_\rho \cdot s \cdot \left(\frac{s^2}{e^2 \eta \theta(x)}\right)^s e^{p\eta/s} \quad s = 1, 2, \dots$$

$$|\mathsf{Truncation}| := \|(S_N f - f) * (\psi_{p,\theta} - S_N \psi_{p,\theta})\|_{L^{\infty}}$$

$$\leq Const \cdot \left(\frac{1}{N}\right)^{s-1} \|\psi_{p,\theta(x)}\|_{C^s}, \ \forall s$$

$$\leq Const \cdot N \left(\frac{s^2}{e^2 \eta \theta(x) N}\right)^s e^{p\eta/s}, \ \forall s.$$

 $\theta(x)$ in denominator dictates $\Rightarrow \theta(x)$ as large as possible.

Remaining:

- Equilibration of Regularization and Truncation Error.
- The optimal number of near vanishing moments, p.

Error Analysis III, Determination of parameter, p

• Truncation minimized over s when:

$$\log\left(\frac{s_{min}^2\pi}{\eta Nd(x)}\right) = \frac{p\eta_c}{s_{min}^2} \quad \Rightarrow \quad s_{min} \sim \sqrt{\eta \cdot Nd(x)}$$

Incorporating this relationship for s_{min} yields

$$p_{min} = \frac{s_{min}^2}{\eta} \cdot \left(\log \frac{s_{min}^2 \pi}{\eta N d(x)}\right) \sim N d(x)$$

Error Analysis III, Determination of parameter, p

• Truncation minimized over s when:

$$\log\left(\frac{s_{min}^2\pi}{\eta Nd(x)}\right) = \frac{p\eta_c}{s_{min}^2} \quad \Rightarrow \quad s_{min} \sim \sqrt{\eta \cdot Nd(x)}$$

Incorporating this relationship for s_{min} yields

$$p_{min} = \frac{s_{min}^2}{\eta} \cdot \left(\log \frac{s_{min}^2 \pi}{\eta N d(x)} \right) \sim N d(x)$$

ullet Adaptivity: The optimal choice for the number of near vanishing moments, p, is given as a function of the distance to the nearest discontinuity!

$$p_{min} := k \cdot Nd(x)$$

k selected to balance Regularization and Truncation errors, k = 0.5596.

Near discontinuities, Normalization

- O(1/N) neighborhood of discontinuity, $p \sim Nd(x) \approx 1$.
- Error for vanishing moments is substantial.

$$\int_{-d}^{d} y^{j} \psi_{p,d}(y) dy = S_{p} * (y^{j} \rho(y)) \Big|_{x=0} \sim \delta_{j0} + Const_{j} \cdot p^{-(j-1)}$$

• Visible error near discontinuities (blurring).

Near discontinuities, Normalization

- O(1/N) neighborhood of discontinuity, $p \sim Nd(x) \approx 1$.
- Error for vanishing moments is substantial.

$$\int_{-d}^{d} y^{j} \psi_{p,d}(y) dy = S_{p} * (y^{j} \rho(y)) \Big|_{x=0} \sim \delta_{j0} + Const_{j} \cdot p^{-(j-1)}$$

- Visible error near discontinuities (blurring).
- To maintain at least first order accuracy, normalize to unit mass

$$\psi_{N,d(x)}^{norm} := \frac{\psi_{Nd(x)}}{\int_{-d}^{d} \psi_{Nd(x)} dx}.$$

- Can possess any fixed number of exactly vanishing moments.
- Polynomial convergence near edges and exponential accuracy away.

There are no free parameters

• Exponential Accuracy away from discontinuity, d(x) > O(1/N).

$$|\psi_{Nd(x)} * S_N f(x) - f(x)| \le C_\rho \cdot Nd(x) e^{-0.845\sqrt{\eta \cdot Nd(x)}}.$$

- Explicit reconstruction depending only on the projection order, N, and the discontinuity locations, d(x).
- ullet Computationally robust due to rapidly decaying localizer, $\rho(\cdot)$.
- Optimal number of near vanishing moments given adaptively by

$$p_{min}(N,x) := k \cdot Nd(x)$$

ullet Polynomial order accuracy in O(1/N) neighborhood of discontinuities

Pseudospectral(Equidistant) Recovery

$$\hat{f}_k := \int_{-\pi}^{\pi} f(x)e^{ikx}dx \quad \Rightarrow \quad \tilde{f}_k := \frac{\pi}{N} \sum_{\nu = -N}^{N-1} f(y_{\nu})e^{iky_{\nu}} \quad y_{\nu} := \frac{\pi}{N} \nu$$

Exponential accuracy the same order as spectral projection:

$$\left| \frac{\pi}{N} \sum_{\nu=-N}^{N-1} \psi_{Nd(x)}(x - y_{\nu}) f(y_{\nu}) - f(x) \right| \le Const_c \cdot (Nd(x))^2 e^{-\sqrt{\eta \cdot Nd(x)}}$$

• The pseudospectral coefficients are not needed; only samples $f(y_{\nu})$.

Pseudospectral(Equidistant) Recovery

$$\hat{f}_k := \int_{-\pi}^{\pi} f(x)e^{ikx}dx \quad \Rightarrow \quad \tilde{f}_k := \frac{\pi}{N} \sum_{\nu=-N}^{N-1} f(y_{\nu})e^{iky_{\nu}} \quad y_{\nu} := \frac{\pi}{N} \nu$$

Exponential accuracy the same order as spectral projection:

$$\left| \frac{\pi}{N} \sum_{\nu=-N}^{N-1} \psi_{Nd(x)}(x - y_{\nu}) f(y_{\nu}) - f(x) \right| \le Const_c \cdot (Nd(x))^2 e^{-\sqrt{\eta \cdot Nd(x)}}$$

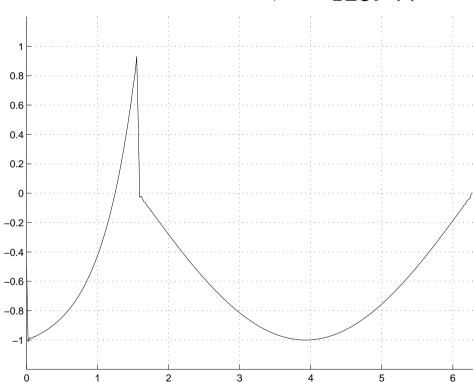
- The pseudospectral coefficients are not needed; only samples $f(y_{\nu})$.
- Robust exponentially accurate method to recover intermediate function values given an equidistant sampling of a piecewise smooth function.
- Accuracy proportional to number of cells to nearest discontinuity.
- Optimal order symmetric reconstruction, contrast with CWENO.

However, this is not Interpolation!

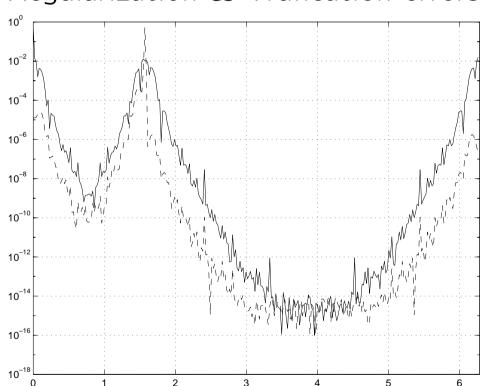
Reconstruction from Spectral Projection

$$f_2(x) = \begin{cases} (2e^{2x} - 1 - e^{\pi})/(e^{\pi} - 1) & x \in [0, \pi/2) \\ -\sin(2x/3 - \pi/3) & x \in [\pi/2, 2\pi) \end{cases}$$

Reconstruction $\psi * S_{128}f(\cdot)$



Regularization & Truncation errors

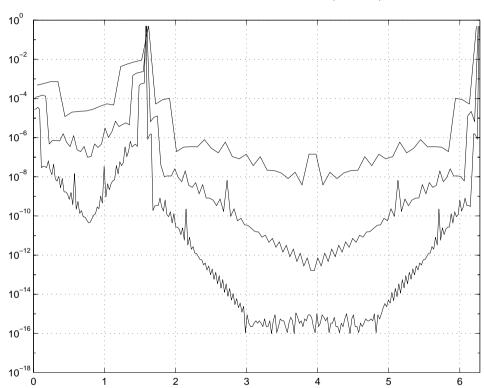


- Balanced decay rate of Regularization and Truncation errors
- ullet Different regularity constants, steep gradient at $\frac{\pi}{2}^-$
- Accuracy sacrificed near discontinuities

Reconstruction from equidistant samples

Reconstruction, $\psi_{Nd(x)} * I_{128}f(\cdot)$

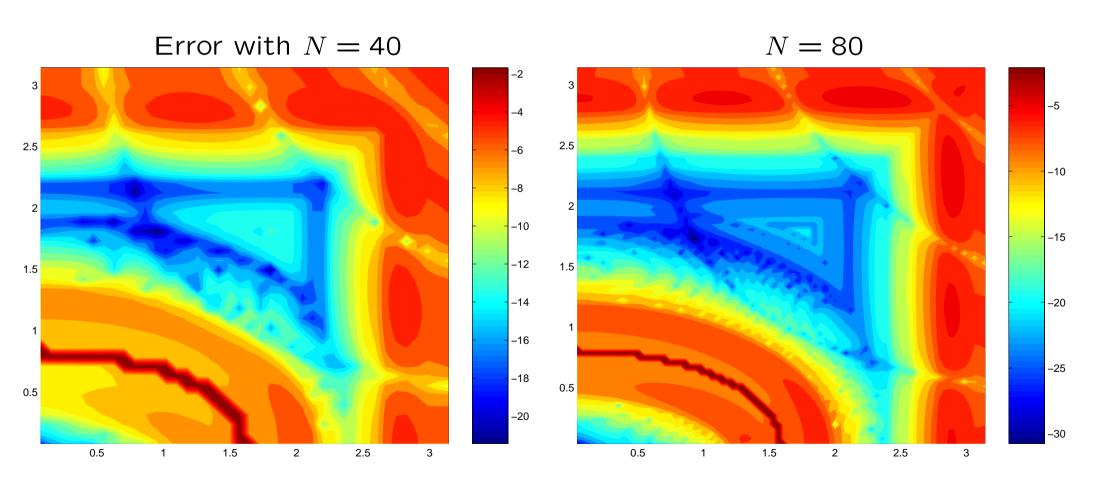
1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 Log of error, N = 32,64,128



- Exponential convergence away from discontinuity
- •Polynomial order accuracy near discontinuity, d(x) = O(1/N)
- •Exact physical space localization, sharp resolution of discontinuities

2D Pseudospectral Example

$$f(x,y) = \begin{cases} \cos(xy) + 1 & 4x^2 + 16y^2 \le \pi^2 \\ \cos(xy) & \text{else} \end{cases}$$



• Also treating boundaries as discontinuities, $x = \pm \pi, y = \pm \pi$.

Summary of Adaptive Mollifiers

- Recovers pointwise function values of piecewise smooth functions given either its spectral projection, or equidistant sampling.
- No parameters determined by the user, a "Black Box" method.
- Computationally robust and well suited for fast parallel computations.
- Exponentially accurate away from the discontinuity and fixed polynomial order convergence rate in the O(1/N) neighborhood of edges.

Summary of Adaptive Mollifiers

- Recovers pointwise function values of piecewise smooth functions given either its spectral projection, or equidistant sampling.
- No parameters determined by the user, a "Black Box" method.
- Computationally robust and well suited for fast parallel computations.
- Exponentially accurate away from the discontinuity and fixed polynomial order convergence rate in the O(1/N) neighborhood of edges.
- Reconstruction errors a combination of
 - near vanishing moments, regularization)
 - physical space localization
 - dual space localization, truncation

⇒ Adaptive Filters

Filters - Classical Polynomial Order

- ullet Piecewise smooth functions, slowly decaying coefficients, $\widehat{f}_k \leq O(k^{-1})$
- Filters increase convergence order by increasing coefficient decay rate

Filter properties
$$\Rightarrow$$
 $\left\{ \begin{array}{l} \textbf{-} \text{ smoothness, } \sigma(\eta) \in C_0^q[-1,1] \\ \textbf{-} \text{ accuracy, } \sigma^{(j)}(0) = \delta_{j0}, \quad j \leq q-1 \end{array} \right\}$

Filters - Classical Polynomial Order

- ullet Piecewise smooth functions, slowly decaying coefficients, $\widehat{f}_k \leq O(k^{-1})$
- Filters increase convergence order by increasing coefficient decay rate

Filter properties
$$\Rightarrow$$
 $\left\{ \begin{array}{l} \textbf{-} \text{ smoothness, } \sigma(\eta) \in C_0^q[-1,1] \\ \textbf{-} \text{ accuracy, } \sigma^{(j)}(0) = \delta_{j0}, \quad j \leq q-1 \end{array} \right\}$

Acts on function and its projection the same, dual space localization

$$f^{\sigma}(x) \equiv S_N f^{\sigma}(x) := \sum_{|k| \le N} \sigma\left(\frac{|k|}{N}\right) \widehat{f}_k e^{ikx}$$

• Error analysis through associated mollifier, acting in physical space

$$S_N f^{\sigma}(x) := f * \Phi(x) = \int_{-\pi}^{\pi} \Phi(y) f(x - y) dy \qquad \Phi(x) := \sum_{|k| \le N} \sigma\left(\frac{k}{N}\right) e^{ikx}$$

Error Analysis - Sketch

Accuracy condition implies a number of near vanishing moments

$$\sigma^{(j)}(0) \equiv \delta_{j,0} \quad \Rightarrow \quad \int_{-d}^{d} y^{j} \Phi(y) dy \sim \delta_{j,0} \quad j = 0, 1, 2, \dots, q - 1.$$

- ullet However, increased filter order, q, decreases localization
- Error composed of competing localization and accuracy errors,

$$|f(x) - f * \Phi(x)| \le \left| \int_{d(x) < |y| \le \pi} \Phi(y) g_x(y) dy \right| + \left| \int_{|y| \le d(x)} \Phi(y) g_x(y) dy \right|$$

where, $g_x(y) := f(x) - f(x - y)$.

Error Analysis - Sketch

Accuracy condition implies a number of near vanishing moments

$$\sigma^{(j)}(0) \equiv \delta_{j,0} \quad \Rightarrow \quad \int_{-d}^{d} y^j \Phi(y) dy \sim \delta_{j,0} \quad j = 0, 1, 2, \dots, q-1.$$

- ullet However, increased filter order, q, decreases localization
- Error composed of competing localization and accuracy errors,

$$|f(x) - f * \Phi(x)| \le \left| \int_{d(x) < |y| \le \pi} \Phi(y) g_x(y) dy \right| + \left| \int_{|y| \le d(x)} \Phi(y) g_x(y) dy \right|$$

where, $g_x(y) := f(x) - f(x - y)$.

- Fixed order filters fail to balance accuracy and localization errors
- Optimal filter order is spatially adaptive, balancing competing errors

$$q_{min} := (k \cdot Nd(x))^{1/\alpha}$$
 $\sigma \in G_0^{\alpha}[-1, 1]$

Reconstruction with Adaptive Filter

$$f_2(x) = \begin{cases} (2e^{2x} - 1 - e^{\pi})/(e^{\pi} - 1) & x \in [0, \pi/2) \\ -\sin(2x/3 - \pi/3) & x \in [\pi/2, 2\pi) \end{cases}$$

Reconstruction, $S_{128}f^{\sigma}(\cdot)$

 $|f(x) - S_N f^{\sigma}(x)|, N = 32,64,128$ 10^{-4} 10⁻⁶ 10⁻⁸ -0.210⁻¹⁰ -0.4-0.6-0.8

- Similar accuracy to Adaptive Mollifier
- Computationally fast when given spectral projection

Adaptive Mollifiers & Filters

A Powerful tool for manipulating a function's spectral projection or equidistant sampling.

Thank you

jtanner@math.ucdavis.edu